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A Alternative measure of comovement

Chen, Singal, and Whitelaw (2016) (CSW) propose an alternative measure of comove-

ment based on univariate regressions which is more appropriate in the case of event

studies. The measurement issues raised by CSW are quite valid in the context of an

event study in which a particular stock is switching index. In this section, I first discuss

why I do not believe that this alternative measure is appropriate in my setup and then

present results estimated using the CSW approach.

A.1 Discussion of the univariate regression approach

My setup is different than the one disucssed by CSW in that I am measuring time

series changes in the average comovement among all index stocks. In this context,

the univariate regression approach of CSW is not appropriate as it cannot capture the

effect under study.

To illustrate this, let’s assume the driving processes for returns are

yt = b1ft + c1u1t + eyt,

x1t = b1ft + c1u1t + e1t,

x2t = b2ft + c2u2t + e2t, (A.1)

where x1t represents an index comprised of a large number of stocks with the same

return process yt and x2t is a second index. Because all stocks in index 1 have the same

loadings b1 and c1 on ft and u1t, index 1 also has the same loadings.

In this context, an increase in average index-linked comovement would come from
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an increase in c1 and a corresponding decrease in b1, assuming that the total variance

of the index in unaffected.

In the univariate regressions

yt = α + β1x1t + εt,

yt = α + β2x2t + εt, (A.2)

the probability limit of the slope coefficient estimates are

β1 = cov(yt, x1t)
var(x1t)

,

β2 = cov(yt, x2t)
var(x2t)

. (A.3)

With the given dynamics, the slope estimates become

β1 =
b2

1σ
2
f + c2

1σ
2
u1

b1b2σ2
f + c2

1σ
2
u1 + σ2

ε1
,

β2 =
b2

1σ
2
f

b2
2σ

2
f + c2

2σ
2
u2 + σ2

ε2
. (A.4)

Clearly, an increase in c1 would not cause any change in β2, and β1 would remain

very close to one, assuming that σ2
ε1 is small relative to var(x1t). If the increase in

c1 is accompanied by a decrease in b1, then β2 would decrease. This corresponds

to empirical results obtained by replicating the main results of the paper using the

univariate regression approach presented in the next section.
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A.2 Main results revisited with univariate regressions

To match the univariate regression approach of CSW, I estimate comovement βunivs

from the following regressions:

Rj,t = αSP500,j + βunivj,SP500,tRSP500,t + uSP500,j,t

Rj,t = αnonSP500,j + βunivj,nonSP500,tRnonSP500,t + unonSP500,j,t, (A.5)

where RSP500,t is the value-weighted return of the S&P 500 stocks portfolio (excluding

stock j) and Rnon-SP500,t is the value-weighted return of the rest of the market.

Figure A.1 of the appendix replicates Figure 6 from the main text, replacing the

bivariate βs by the CSW univariate βs. Consistent witth the discussion in the previous

section, I find that the average βunivSP500,t is stable through time, remaining close to one.

The average βunivnonSP500,t is also quite stable close two one, with the exception of two

outlier years.

I next reestimate the regressions presented in Table 1 of the main text using the

CSW univariate βs. Results presented in Table A.1 of this appendix show that the

estimate for ∆β1 is small and negative, while the estimate for ∆β2 is larger and negative.

However, none of these estimates is statistically significant.

B Proofs and model derivation

B.1 Setup

This section provides additional details on the model presented in Section 3.
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B.1.1 Information structure

Uncertainty is represented by a filtered probability space (Ω,F ,F,P) on which is de-

fined a 3-dimensional vector of independent Brownian motions Z = [Z1 Z2 Z3]′. The

filtration F = {Ft} is the augmentation under P of the filtration generated by Z. The

σ-field Ft represents the information available at time t and the probability measure P

represents the agent’s common beliefs. Stochastic processes to follow are progressively

measurable with respect to F and equalities involving random variables hold P-a.s.

B.1.2 Consumption space

There is a single perishable good, the numeraire. The agents’ consumption set C is

given by the set of non-negative progressively measurable consumption rate process ct

with
∫ T

0 |ct|dt <∞, ∀T ∈ [0,∞).

B.1.3 Securities market

The investment opportunities are represented by a locally riskless bond earning the

instantaneous interest rate r and three risky stocks, representing claims to exogenously

given strictly positive dividend processes Di, i = 1, 2, 3, with

dDi,t

Di,t

= µDdt+ σDdZDi,t
, i ∈ {1, 2, 3}, (A.1)

where ZD,i are standard Brownian motions1 with equal pairwise correlation coefficients

ρD. The aggregate dividend is defined as DM,t = ∑3
i=1 Di,t and the index dividend is

1ZD,i are linear combinations of the fundamental independent Brownian motions Zi defined in

B.1.1. For more details about the transformation, see Appendix C.
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defined as DI,t = ∑2
i=1 Di,t.2 The initial bond value is normalized to unity so that the

bond price process is given by

Bt = exp
(∫ t

0
rsds

)
. (A.2)

The stock price processes can be defined as

dSi,t = (Si,tµi,t −Di,t)dt+ Si,tσi,tdZt, (A.3)

where µt is the 3-dimensional column vector with µi,t as the ith element and σt is

the 3 × 3 matrix with σi,t as the ith column. The instantaneous covariance matrix is

Σt = σtσ
′
t. Both µt and σt are determined endogenously in equilibrium.

Stock return processes can be defined from stock prices and dividends as

dRi,t = dSi,t +Di,tdt

Si,t
= µi,tdt+ σi,tdZt. (A.4)

The supply of each stock is normalized to one share, while the bond is in zero net

supply. There exist a value-weighted index with stocks 1 and 2 as its constituents.

The third stock is a non-index stock.

B.1.4 The index and the market

The basket of stocks 1 and 2 is called the index I, which by construction represents

a value-weighted index, and the basket of stocks 1, 2 and 3 is called the market M .

The index and market baskets therefore also pay dividend streams with dynamics as

2See Appendix B.1 for details on the market and the index portfolios.
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described in (A.1), with the exception that their variance parameters have the form:

σDI
=
[
1− 2s1s2

(s1 + s2)2 (1− ρD)
]
σ2
D, (A.5)

σDM
= [1− 2(s1s2 + s1s3 + s2s3)(1− ρD)]σ2

D, (A.6)

where si is the weight of share of dividends of asset i:

si = Di

D1 +D2 +D3
, i ∈ {1, 2, 3}. (A.7)

Let ωi,t denote the market weight of stock i at time t such that ∑3
i=1 ωi,t = 1 and let

ωIi,t = ωi,t/(ω1,t + ω2,t) denote the weight of asset i ∈ {1, 2} in the index. Then the

index return moments are

µI,t = ωI1,tµ1,t + ωI2,tµ2,t, (A.8)

σ2
I,t = (ωI1,t)2σ2

1,t + (ωI2,t)2σ2
2,t + 2ωI1,tωI2,tcorr(dZ1,t, dZ2,t)σ1,tσ2,t. (A.9)

B.1.5 Trading strategies

Trading takes place continuously. An admissible trading strategy is a 4-dimensional

vector process (α, γ), where γ is an 3-dimensional column vector with γi as its ith

element and αt and γi,t denote the amounts invested at time t in the bond and in stock

i, satisfying the required regularity conditions.3

A trading strategy (α, γ) is said to finance the consumption plan c ∈ C if the

corresponding wealth process W = α + 1′γ satisfies the dynamic budget constraint

dWt = [αtrt + γ′tµt − ct]dt+ [γ′tσt]dZt, (A.10)

3See pp.234-235 of Back (2010) for a formal presentation of the required regularity conditions.
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where 1 is a 3-dimensional column vector of ones.

B.1.6 Agent’s preferences and endowments

There are two representative agents, an active investor A and an indexer I, both with

time-additive log-normal utility functions:

Uj,t(c) = Et

[∫ ∞
0

e−δτ log(cj,(t+τ))dτ
]
, j ∈ {A, I} (A.11)

for some common rate of time preference δ > 0 and individual consumption cj.

Agents differ by their endowment and by their investment opportunity set. The

indexer is endowed with a fraction β of each index stocks while the active investor owns

(1 − β) share of each index stock and one share of the non-index stock. The indexer

faces an exogenous constraint that limits her investment opportunity set to the bond

and the index portfolio, according to index weights, which are endogenous. The active

investor is unconstrained and faces a complete market.

B.1.7 Equilibrium

Let E = ((Ω,F ,F,P), D1, D2, D3, U1, U2, β) denote the primitives for the economy. An

equilibrium for the economy E is an interest rate stock price process (r, S) and a set

{c∗j , (α∗j , γ∗j )}, j ∈ {A, I} of consumption and admissible trading strategies for the two

agents such that:

1. (α∗j , γ∗j ) finances c∗j for j ∈ {A, I};

2. c∗A maximizes UA over the set of consumption plans c ∈ C financed by an admis-

sible trading strategy (α, γ) ∈ γ with α0 + γ′01 = (1− β)[S1,0 + S2,0] + S3,0;
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3. c∗I maximizes UI over the set on consumption plans c ∈ C financed by an admis-

sible trading strategy (α, γ) ∈ γ with α0 + γ′01 = β[S1,0 + S2,0], γj,t = γI,t
Si,t

S1,t+S2,t

for i = 1, 2 where γI is the amount invested in the index and γ3 ≡ 0;

4. all markets clear: c∗A + c∗I = D, α∗A + α∗I = 0 and γ∗A + γ∗I = S.

B.2 Agents’ problem

Agent j’s optimization problem at time t is to maximize her time additive utility:

Uj,t = Et

[∫ ∞
t

e−δ(s−t) log cj,sds
]

(A.12)

subject to her budget constraint. Formally, this gives:

maxUj,t subject to Et

[∫ ∞
0

ξj,s
ξj,t

cj,sds

]
≤ Wj,t, (A.13)

where ξj,t is the marginal utility of agent j at time t. The first order condition is:

κj
ξj,s
ξj,t

= e−δ(s−t)c−1
j,s , (A.14)

where κj is the Lagrange multiplier on the budget constraint and ξj,t is a process given

by:
dξj,t
ξj,t

= −rj,tdt− θ′j,tdZt. (A.15)

where θj,t is the price of risk process for agent j. Note that the process can also be

written with respect to the dividend basis and the market basis4 as:

dξj,t
ξj,t

= −rj,tdt− θ
′
j,tdZD,t = −rj,tdt− θ′j,tdZt. (A.16)

4For a definition of the different bases, see Appendix C.
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The rationale for using two different bases, in addition to the initial Brownian motions

Z, is that each of the two new bases simplifies the derivation of the solution for a part

of the problem and involves independent Brownian motions, which are easier to deal

with. It is simpler to solve for optimal portfolios and market clearing under the market

basis. However, the market basis transformation depends on stock return covariances,

so it is not appropriate to solve for equilibrium price dynamics. The dividend basis is

more useful for that purpose.

Since both agents trade in the bond, in equilibrium they should have the same

riskless rate (i.e. rI,t = rA,t = rt.) However their different investment opportunity

sets means they will face different market price of risk. Following the convex duality

methodology approach of Cvitanić and Karatzas (1992), I define a fictitious market

which the indexer views as complete. In the current setup with log ulity, the market

price of risk in the fictitious market is the same as in the incomplete market (see

Example 7.2 on p.304 Karatzas and Shreve (1998) for more details.) The idea is to

create a fictitious market for agent I by replacing the expected return on asset i by

µi(ψ) = µi +ψi such that in equilibrium she chooses not to hold the unavailable asset,

and to hold the index assets according to index weights. In the present setup,

ψ = argminψ
[
(µ1(ψ)− r, µ2(ψ)− r, µ3(ψ)− r)Σ−1(µ1(ψ)− r, µ2(ψ)− r, µ3(ψ)− r)′

]1/2
.

(A.17)

Substituting the ψ obtained in (A.17) in the shadow market price of risk of the indexer
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I obtain, under the market basis:

θI = φIσ
−1
I


σ1ω

I
1 + ρ12σ2ω

I
2√

1− ρ2
12σ2ω

I
2

0

 , (A.18)

where φI = µI−r
σI

is the Sharpe ratio of the index. Since (σ1ω
I
1+ρ12σ2ω

I
2)2+(

√
1− ρ2

12σ2ω
I
2)2 =

σ2
I , in scalar form θI = φI . The result in (A.18) has the same form if working under

the dividend basis following (A.16):

θI = φIσ
−1
I


ωI1σ11 + ωI2σ21

ωI1σ12 + ωI2σ22

ωI1σ13 + ωI2σ23

 . (A.19)

Agent A is unconstrained and faces complete markets, so her market price of risk under

the market and dividend bases are given by:

θA = σ−1(µ1 − r, µ2 − r, µ3 − r)′

=



φ1

φ1−ρ12φ2√
1−φ2

12

φ3(1−ρ2
12)−φ1(ρ13−ρ12ρ23)−φ2(ρ23−ρ12ρ13)√

1−ρ2
12

√
1−ρ2

12−ρ
2
13−ρ

2
23+2ρ12ρ13ρ23


, (A.20)

θA = σ−1(µ1 − r, µ2 − r, µ3 − r)′

= 1
c


x1(σ23σ32 − σ22σ33) + x2(σ12σ33 − σ13σ32) + x3(σ13σ22 − σ12σ23)

x1(σ21σ33 − σ23σ31) + x2(σ13σ31 − σ11σ33) + (x3σ11σ23 − σ13σ21)

x1(σ22σ31 − σ21σ32) + x2(σ11σ32 − σ12σ31) + x3(σ12σ21 − σ11σ22)

 , (A.21)
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where

c = σ13(σ22σ31 − σ21σ32) + σ12(σ21σ33 − σ23σ31) + σ11(σ23σ32 − σ22σ33),

and xi = µi − r is the excess return on asset i.

B.3 Optimal portfolios

Agent A is unconstrained, so her optimal portfolio proportions are given by

πA,t = Σ−1
t (µt − r1). (A.22)

Under the market basis the covariance matrix is Σt = σtσ
′
t, so

πA =



φ1(1−ρ2
23)−φ2(ρ12−ρ13ρ23)−φ3(ρ13−ρ12ρ23)
σ1(1−ρ2

12−ρ
2
13−ρ

2
23+2ρ12ρ13ρ23)

φ2(1−ρ2
13)−φ1(ρ12−ρ13ρ23)−φ3(ρ23−ρ12ρ13)
σ2(1−ρ2

12−ρ
2
13−ρ

2
23+2ρ12ρ13ρ23)

φ3(1−ρ2
12)−φ1(ρ13−ρ12ρ23)−φ2(ρ23−ρ12ρ13)
σ3(1−ρ2

12−ρ
2
13−ρ

2
23+2ρ12ρ13ρ23)

 . (A.23)

As for agent I, I know from Cvitanić and Karatzas (1992) that πI,t coincides with the

optimal portfolio in the incomplete market:

πI =


πIIω

I
1

πIIω
I
2

0

 , (A.24)
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where πII,t = (µI,t − r)/σ2
I,t, so

πI =


ωI1

φI

σI

ωI2
φI

σI

0



=



ωI
1(x1ωI

1+x2ωI
2)

σ2
1(ωI

1)2+2ρ12σ1σ2ωI
1ω

I
2+σ2

2(ωI
2)2

ωI
2(x1ωI

1+x2ωI
2)

σ2
1(ωI

1)2+2ρ12σ1σ2ωI
1ω

I
2+σ2

2(ωI
2)2

0

 . (A.25)

The market clearing condition imposes that

ωt = πA,tνA,t + πI,tνI,t, (A.26)

where ωt is a 3-dimensional vector with the i-th element equal to the value-weight of

stock i in the economy (ωi = Si/
∑3
k=1 Sk). Substituting the optimal portfolio weights

in the market clearing condition yields the following proposition:

Proposition A.1 In equilibrium, expected excess stock returns are as follows:

µ1 − rf = 1
σ2
IωI

[(µI − rf )(σ1ω1 + ρ1,2σ2ω2)

+ ω2ω3

νAωI

(
ω1[cov(dR1, dR2)cov(dR1, dR3)− σ2

1cov(dR2, dR3)]

−ω2[cov(dR1, dR2)cov(dR2, dR3)− σ2
2cov(dR1, dR3)]

)]
, (A.27)

µ3 − rf = ω3σ
2
3 + (1− ω3)cov(dRI , dR3) + ω3σ

2
3

[
νI
νA

(1− ρ2
I,3)

]
, (A.28)

µI − rf = ωIσ
2
I + (1− ωI)cov(dRI , dR3), (A.29)

where µI and σI denote the drift and variance of the index and ωI = ω1 + ω2. Result
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for stock 2 is omitted as it is symmetric to stock 1.

Proof The market clearing condition imposes that:

ωt = πA,tνA,t + πI,tνI,t

=



νA(x3(ρ13−ρ12ρ23)σ1σ2+(x2(ρ12−ρ13ρ23)σ1+x1(−1+ρ2
23)σ2)σ3)

(−1+ρ2
12+ρ2

13−2ρ12ρ13ρ23+ρ2
23)σ2

1σ2σ3
− (−1+νA)ω1(x1ω1+x2ω2)

σ2
1ω

2
1+2ρ12σ1σ2ω1ω2+σ2

2ω
2
2

νA(x3(−ρ12ρ13+ρ23)σ1σ2+(x2(−1+ρ2
13)σ1+x1(ρ12−ρ13ρ23)σ2)σ3)

(−1+ρ2
12+ρ2

13−2ρ12ρ13ρ23+ρ2
23)σ1σ2

2σ3
− (−1+νA)ω2(x1ω1+x2ω2)

σ2
1ω

2
1+2ρ12σ1σ2ω1ω2+σ2

2ω
2
2

νA(x3(−1+ρ2
12)σ1σ2+(x2(−ρ12ρ13+ρ23)σ1+x1(ρ13−ρ12ρ23)σ2)σ3)
(−1+ρ2

12+ρ2
13−2ρ12ρ13ρ23+ρ2

23)σ1σ2σ2
3


,

(A.30)

where xi = µi − r are excess returns. Solving for x1, x2 and x3, I get:

x∗1 = (σ1 (σ2σ3ω2ω3 (ρ12ρ13σ1ω1 − ρ23σ1ω1 + ρ13σ2ω2 − ρ12ρ23σ2ω2)

+νA (σ1ω1 + ρ12σ2ω2)
(
σ2

1ω
2
1 + 2ρ12σ1σ2ω1ω2 + ρ13σ1σ3ω1ω3 + σ2

2ω
2
2 + ρ23σ2σ3ω2ω3

)))
/
(
νA
(
σ2

1ω
2
1 + 2ρ12σ1σ2ω1ω2 + σ2

2ω
2
2

))
= (ω1σ1 + ω2ρ12σ2)

(
1− ω3σ3

σ2
I

(ω1ρ13σ1 + ω2ρ23σ2

)

+ ω2ω3σ2σ3

νAσ2
I

[ω1σ1(ρ12ρ13 − ρ23)− ω2σ2(ρ12ρ23 − ρ13)] . (A.31)
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I can also write x∗1 in terms of x∗I :

x∗1 = 1
νAσ2

Iω
2
I

{σ1 (σ2σ3ω2ω3 (ρ12ρ13σ1ω1 − ρ23σ1ω1 + ρ13σ2ω2 − ρ12ρ23σ2ω2)

+νA (σ1ω1 + ρ12σ2ω2) (x∗IωI))}

= 1
σ2
IωI

[x∗I(σ1ω1 + ρ1,2σ2ω2)

+ ω2ω3

νA

(
ω1

ωI
[cov(dR1, dR2)cov(dR1, dR3)− σ2

1cov(dR2, dR3)]

−ω2

ωI
[cov(dR1, dR2)cov(dR2, dR3)− σ2

2cov(dR1, dR3)]
)]
. (A.32)

For x∗3, I get

x∗3 =
(
σ3
(
νAρ13σ

3
1ω

3
1 + σ2

1ω
2
1

(
νA (2ρ12ρ13 + ρ23)σ2ω2 +

(
1 + (−1 + νA) ρ2

13

)
σ3ω3

)
+σ2

2ω
2
2

(
νAρ23σ2ω2 +

(
1 + (−1 + νA) ρ2

23

)
σ3ω3

)
+σ1σ2ω1ω2 (2ρ12 (νAρ23σ2ω2 + σ3ω3) + ρ13 (νAσ2ω2 + 2 (−1 + νA) ρ23σ3ω3))))

/
(
νA
(
σ2

1ω
2
1 + 2ρ12σ1σ2ω1ω2 + σ2

2ω
2
2

))
= ωIcov(dRI , dR3) + ω3σ

2
3

[
1 + νI

νA
(1− ρ2

I,3)
]
, (A.33)

where

x∗I = σ2
1ω

2
1 + 2ρ12σ1σ2ω1ω2 + σ2

2ω
2
2 + ρ13σ1σ3ω1ω3 + ρ23σ2σ3ω2ω3

ω1 + ω2

= σ2
IωI + ω3cov(dRI , dR3), (A.34)

with ωI = ω1 + ω2. Results for x2 are omitted as they are symmetric to x1.

Proposition A.1 tells us that holding variances and covariances constant, the non-
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index stock excess returns are increasing in the relative wealth of passive investors. This

is due to the additional risk active investors are taking as they become more under-

diversified (compared with the case where they hold the market). It is highlighted by

the term of correlation between the index and stock 3. This is consistent with the

standard result from one period models of mild segmentation (see, e.g., Errunza and

Losq (1985).) I cannot however conclude from Proposition A.1 on the actual equilib-

rium effect of an increase in νI as the variance and covariance terms are determined

endogenously in equilibrium and thus also depend on νI .

B.4 Proof of Proposition 1

Following Cuoco and He (1994), I can still use a social planner to derive equilibrium

prices, but the weight λt will be stochastic:

Ut = Et

∫ ∞
t

e−δ(s−t) (log cA,s + λs log cI,s) ds. (A.35)

The consumption sharing rule is given by:

1 =
c−1
A,t

λtc
−1
I,t
. (A.36)

I define Agent j’s equilibrium share of world consumption as νj,t = cj,t

DM,t
. In equilibrium

the two agents must consume the aggregate dividend: cA,t + cI,t = DM,t. Thus,

νA,t = 1
1 + λt

, νI,t = λt
1 + λt

. (A.37)
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As in Basak and Cuoco (1998), the equilibrium state-price density ξt is given by the

state-price density of the unconstrained agent A:

ξt = ξA,t = κAe
−δt(νA,tDM,t)−1. (A.38)

To solve for equilibrium prices, I need to derive an expression λt and the related process

νA,t. Sustituting cA and cI from (A.14) in (A.36), I get:

λt = κAξA,t/ξA,0
κIξI,t/ξI,0

. (A.39)

Solving (A.16), agent j’s state-price density under the dividend basis, gives:

ξj,t = ξj,0e
−
∫ t

0 (rs+ 1
2 θ

2
j,s)ds−

∫ t

0 θ
′
j,sdZD,s (A.40)

where θj,s = θ
′
j,s1 and 1 is a vector of ones. Substituting (A.40) in (A.39) gives:

λt = κA
κI
e−
∫ t

0
1
2 (θ2
A,s−θ

2
I,s)ds−

∫ t

0 (θA,s−θI,s)′dZD,s . (A.41)

Applying Itô’s Lemma gives:

dλt
λt

= µλ,tdt+ σ′λ,tdZD,t, (A.42)

where

µλ,t = θ
′
I,t(θI,t − θA,t), (A.43)

σλ,t = (θI,t − θA,t). (A.44)

16



Rewriting as a scalar process, I get:

dλt
λt

= µλ,tdt+ σλ,tdZλ,t, (A.45)

where

σλ,t =
√

(θI,t − θA,t)′(θI,t − θA,t), (A.46)

dZλ,t = σ−1
λ,tσ

′
λ,tdZD,t. (A.47)

Remember that:

θI = xI
σ2
I

σ′


ωI1

ωI2

0

 , θA = σ−1


x1

x2

x3

 .

Therefore,

θI − θA = xI
σ2
I

σ′


ωI1

ωI2

0

− σ
−1


x1

x2

x3

 , (A.48)

σ(θI − θA) = xI
σ2
I

Σ


ωI1

ωI2

0

−

x1

x2

x3



=



ωI
2
σ2

I
[x2ω

I
2(ωI1σ2

1 + ωI2ρ12σ1σ2)− x1ω
I
2(ωI2σ2

2 + ωI1ρ12σ1σ2)]

ωI
1
σ2

I
[x1ω

I
1(ωI2σ2

2 + ωI1ρ12σ1σ2)− x2ω
I
1(ωI1σ2

1 + ωI2ρ12σ1σ2)]

xIβI,3 − x3

 , (A.49)
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where βI,3 = ρI,3σ3/σI = (ωI1ρ13σ1σ3+ωI2ρ23σ2σ3)/σ2
I . One can easily see that θ′IθI = x2

I

σ2
I

and that θ′IθA = x2
I

σ2
I
. Note that those results are basis invariant. I obtain:

µλ = θ
′
I(θI − θA) = 0. (A.50)

Similarly,

σ2
λ = (θI − θA)′(θI − θA)

= −x
2
I

σ2
I

+ θ
′
AθA, (A.51)

⇒ σλ =

√√√√[x1 x2 x3]Σ−1[x1 x2 x3]′ − x2
I

σ2
I

. (A.52)

Using the definition of νA in (A.37) and applying Itô Lemma gives:

dνA = µνAdt+ σ′νAdZD, (A.53)

where

µνA = νAν
2
Iσ

2
λ, (A.54)

σνA = νAνIσλ. (A.55)

In scalar notation this becomes:

dνA = µνAdt+ σνAdZλ, (A.56)

σνA = −νAνIσλ. (A.57)
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Applying Itô’s Lemma to (A.38), I obtain:

dξ

ξ
= −

[
δ + µDM

− σ2
DM

+ ρνADM
σνAσDM

νA

]
dt

−
[
σ′DM

+
σ′νA
νA

]
dZD. (A.58)

Equaling the terms to those in (A.16), I get:

rf = δ + µDM
− σ2

DM
+ ρνADM

σνAσDM

νA
, (A.59)

θ = σDM
+ σνA

νA
. (A.60)

B.5 Proof of Corollary 1

From (A.38) I can assert that θ = θA. Thus, from (A.44), (A.55) and (A.60),

θA = σDM
+ σνA

νA

= σDM
− νIσλ

= σDM
− νI(θI − θA), (A.61)

⇒ θ = σDM

νA
− νI
νA
θI , (A.62)

θ = σDM
+ νI
νA

(
σDM

− θI
)
. (A.63)

Note here that σDM
is exogenous to the model (when defined relative to the dividend

basis), νI and νA = 1− νI are state variables and the other quantities are determined

endogenously in equilibrium. Denoting θ? = σDM
the price of risk when there are no
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indexers (νA = 1, νI = 0),

θ = θ
? + νI

νA

(
θ
? − θI

)
⇒
(
θ
? − θA

)
= − νI

νA

(
θ
? − θI

)
. (A.64)

B.6 Corollary A.1 to Proposition 1

Corollary A.1 In equilibrium, the share of aggregate wealth owned by the active in-

vestor follows the process:

dνA = µνAdt+ σνAdZλ, (A.65)

where

µνA = νAν
2
Iσ

2
λ, (A.66)

σνA = νAνIσλ, (A.67)

and σλ is the volatility of the stochastic weight in the representative agent’s problem.

Proof Follows from the proof of Proposition 1.

Corollary A.1 illustrates that the equilibrium is not stationary. Since µνA is positive,

over time the active investor will dominate, and νA = 1 (νA = 0) is an absorbing state

(in that case both µνA and σνA are equal to 0). This is a standard feature of models

with constrained investors; the unconstrained one will dominate over time since both

agents have the same preferences but differ in their investment opportunity sets. Thus,

in its current form, the model cannot explain the rise of indexing of the past decades.

A richer model could generate the observed level of indexing as an endogenous outcome
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in a general equilibrium setup. For example, this could be done by adding frictions

such as the incremental cost of active investing and allowing one rational agent to

invest both passively and actively at the same time, as in Petajisto (2009). However,

the additional complexity is not necessary for the current discussion. The current form

of the model provides valuable insight on stock prices dynamics for given levels of

indexing, which is the purpose of this paper.

B.7 Proof of Proposition 2

In this section, I derive the dynamics of each stock’s price process.

Since both agents have time-additive log utility, it follows from the first order

condition of the HJB equation that the aggregate stock market value SM,t = S1,t +

S2,t + S3,t = DM,t/δ, and thus aggregate stock market value is independent of the

relative wealth of agents.5

The price Si,t of stock i at time t is the expected value of future dividends discounted

using the stochastic discount factor of the representative agent ξ defined in (A.58):

Si,t = Et

[∫ ∞
t

ξτ
ξt
Di,τdτ

]
. (A.68)

Using the results from equations (A.14) and (A.38), I have

Si,t = Et

∫ ∞
t

e−δ(τ−t)
(
cA,τ
cA,t

)−1

Di,τdτ

 . (A.69)

5For infinite horizon log utility, J(t, w, x) = logw
δ + f(t, x). The FOC of the HJB equation is

u′(ci) = Jwi , which yields ci = wiδ. In the current setup, the representative agent must consume the

aggregate dividend and own the aggregate stock market, thus cA + cI = DM and wA + wI = SM .

We thus have that SM = DM/δ.
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From (A.37), I have:

cA,t = DM,t

1 + λt
, (A.70)

thus
cA,t
cA,τ

= DM,t

DM,τ

1 + λτ
1 + λt

. (A.71)

Substituting this last result in (A.69), I obtain:

Si,t = DM,tEt

[∫ ∞
t

e−δ(τ−t)
1 + λτ
1 + λt

si,τdτ

]

= DM,tfi,t, (A.72)

where

fi,t = Et

[∫ ∞
t

e−δ(τ−t)
1 + λτ
1 + λt

si,τdτ

]

= 1
1 + λt︸ ︷︷ ︸
νA,t

Et

[∫ ∞
t

e−δ(τ−t)si,τdτ
]

︸ ︷︷ ︸
fAi,t

+ λt
1 + λt︸ ︷︷ ︸
νI,t

Et

[∫ ∞
t

e−δ(τ−t)
λτ
λt
si,τdτ

]
︸ ︷︷ ︸

fIi,t

(A.73)

= νA,tf
A
i,t + νI,tf

I
i,t. (A.74)

Note that in a world without constraints, λt is constant and we thus have fi,t = fAi,t.

Alternatively, I can get this result by setting νA,t = 1 and νI,t = 0.

B.8 Solving for fAi,t

fAi,t depends on the relative share of the aggregate dividend of each stock, si,t as defined

in (A.7). Therefore,

si,t = Di,t

DM,t

. (A.75)
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To fully characterize the relative weights of each dividend stream two of those si are

sufficient, so I need two state variables. Using Itô’s Lemma, I obtain:

dsMi
sMi

=
[
σ′DM

(σDM
− σDi

)
]
dt

+ (σDi
− σDM

)′dZD, (A.76)

which after simplification yields

dsi = µsi
dt+ σ′si

dZD, (A.77)

where

µsi
= sis−i

[
−siσ2

D + s−iσ
2
D−i

+ (si − s−i)ρDiD−i
σDσD−i

]
, (A.78)

σsi
= sis−i(σDi

− σD−i
), (A.79)

and D−i represents the dividend stream of the other two stocks combined.

Defining yi,t = log si,t

s−i,t
, it follows from Itô’s Lemma that:

dyi = µyi
dt+ σ′yi

dZD (A.80)

where

µyi
=
[
µDi
− 1

2σ
2
Di

]
−
[
µD−i

− 1
2σ

2
D−i

]
, (A.81)

σyi
= σDi

− σD−i
. (A.82)

In scalar form,

dyi = µyi
dt+ σyi

dZyi
, (A.83)
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where

σyi
=
√

(σDi
− σD−i

)′σDi
− σD−i

=
√
σ2
Di

+ σ2
D−i
− 2ρDiD−i

σDi
σD−i

, (A.84)

Zyi
= σ−1

yi
σ′yi
dZD. (A.85)

From Cochrane, Longstaff, and Santa-Clara (2008), I know there is a closed-form

expression for fAi,t if yi is the only relevant state variable (νA is irrelevant for fAi,t). In

the present case the moments of the dividend process of portfolio −i also depend on

the relative dividend of the two stocks in that portfolio, i.e. y1 depends on D2/D3. So

fAi,t depends on two state variables representing the relative dividend processes. Let’s

use y1 and y2 as the state variables. Note also that since ∑3
i=1 f

A
i,t = 1

δ
, we only need

to solve for two i to get the third one. We’ll solve for i = 1, 2 so the functions will be

symmetric. Here I show the derivation of fA1,t. Note from (A.77) that si = 0 and si = 1

are absorbing states, so we obtain the following boundary conditions:

lim
y1→−∞

fA1,t = 0, (A.86)

lim
y1→∞

fA1,t = 1
δ
, (A.87)

lim
y2→∞

fA1,t = 0. (A.88)

The boundary condition limy2→−∞ f
A
1,t is less obvious because in that case asset 2 be-

comes irrelevant, so fA1,t converges to the Cochrane, Longstaff, and Santa-Clara (2008)

case. From the Feynman-Kac theorem, we can transform the problem to a PDE rep-
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resentation:

1
2σ

2
y1

∂2fA1
∂y2

1
+ 1

2σ
2
y2

∂2fA1
∂y2

2
+ σ′y1σy2

∂2fA1
∂y1∂y2

+ µy1

∂fA1
∂y1

+ µy2

∂fA1
∂y2
− ρfA1 + 1

1 + e−y1
= 0,

(A.89)

where

µy1 = −
[
s2 − s1s2 − s2

2
(1− s1)2

]
(1− ρD)σ2

D,

µy2 = −
[
s1 − s1s2 − s2

1
(1− s2)2

]
(1− ρD)σ2

D,

σ2
y1 =

[
2− 2(s2 − s1s2 − s2

2)
(1− s1)2

]
(1− ρD)σ2

D,

σ2
y2 =

[
2− 2(s1 − s1s2 − s2

1)
(1− s2)2

]
(1− ρD)σ2

D,

σ′y1σy2 =
[

(1 + s1 (−3 + 2s1)− 3s2 + 2s1s2 + 2s2
2)

(1− s1) (1− s2)

]
(1− ρD)σ2

D.

Following Bhamra (2007), I use a perturbation expansion of the form:

fA1 = fA1,0 + εfA1,1 + ε2fA1,2 + . . . (A.90)

Defining ρD = 1− 2ε2, I get:

fA1,0 = 1
δ + e−y1δ

,

fA1,1 = 0,

fA1,2 = ey1 (1− ey1 (−1 + s1) 2 + s2
1 + 2s1 (−1 + s2) + 2 (−1 + s2) s2)σ2

D

(1 + ey1)3 (−1 + s1) 2δ2
,

fA1,3 = 0.
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After simplification, I obtain:

fA1 = s1

δ
− s1 (1− 3s1 + 2s2

1 − 2s2 + 2s1s2 + 2s2
2) (−1 + ρD)σ2

D

2δ2 +O(ε4). (A.91)

B.9 Solving for fIi,t

Remember that

fIi,t = Et

[∫ ∞
t

e−δ(τ−t)
λτ
λt
si,τdτ

]
, (A.92)

which depends on y1,t, y2,t and νA,t = 1
1+λt

. Note that λ is a local martingale and that

assuming σλ is bounded, then it is an exponential martingale. I can then define a new

measure:6

P′(AT ) = Et [1AT
λT ] , ∀t, T ∈ [0,∞) t ≤ T. (A.93)

With this change of measure,

fIi,t = EP′
t

[∫ ∞
t

e−δ(τ−t)si,τdτ
]
. (A.94)

From (A.94), it follows that fIi,t satisfies a BSDE. The coefficients of the BSDE will

depend on νAi,t, which satisfies a FSDE. Together they form a FBSDE. The Feynman-

Kac theorem still applies thus fIi,t satisfies the following inhomogeneous elliptic PDE:

µP′
y1

∂fI1
∂y1

+ µP′
y2

∂fI1
∂y2

+ µP′
νA

∂fI1
∂νA

+ 1
2σ

2
y1

∂2fI1
∂y2

1
+ 1

2σ
2
y2

∂2fI1
∂y2

2
+ 1

2σ
2
νA

∂2fI1
∂ν2
A

+ σ′y1σy2

∂2fI1
∂y1∂y2

+ σ′y1σνA

∂2fI1
∂y1∂νA

+ σ′y2σνA

∂2fI1
∂y2∂νA

− ρfI1 + 1
1 + e−y1

= 0,

(A.95)

6See pages 28-29 of Karatzas and Shreve (1998) for details.
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where

µP′
y1 = µy1 + σ′y1σλ,

µP′
y2 = µy2 + σ′y2σλ,

µP′
νA

= µνA + σ′νAσλ

= −ν2
A(1− νA)σ2

λ,

σ′y1σνA
= −νA(1− νA)σ′y1σλ,

σ′y2σνA
= −νA(1− νA)σ′y2σλ,

σ′y1σλ = σ′D1σλ −
(

s2

1− s1

)
σ′D2σλ −

(
1− s2

1− s1

)
σ′D3σλ,

σ′y2σλ = σ′D2σλ −
(

s1

1− s2

)
σ′D1σλ −

(
1− s1

1− s2

)
σ′D3σλ.

Note that σ2
νA

also depends on σ2
λ and that σλ (and σ2

λ) depends on the endogenously

determined σ.

B.9.1 Boundary conditions

The required boundary conditions are the following:

lim
y1→−∞

fI1,t = 0, (A.96)

lim
y1→∞

fI1,t = 1
δ
, (A.97)

lim
y2→∞

fI1,t = 0, (A.98)

lim
νA→1

νIf
I
1,t = 0, (A.99)

∂fI1,t
∂νA

∣∣∣∣∣
νA=0

= 0. (A.100)
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Finally, when y2 → −∞, then the second dividend tree becomes irrelevant and fI1,t

converges to the case of Bhamra (2007). The other boundary conditions are justified

as follows:

1. limy1→−∞ f
I
1,t = 0 and limy2→∞ f

I
1,t = 0: When y2 →∞, I must be that y1 → −∞.

When y1 → −∞, the first dividend stream becomes irrelevant so investors aren’t

willing to pay anything to own the stock.

2. limy1→∞ f
I
1,t = 1

δ
: In this case there is a single dividend tree and complete markets

(the constraint becomes irrelevant), so:

S1 = D1

δ
= DM(νA,tfA1,t + νI,tf

I
1,t),

⇒ 1
δ

= νA,t

(1
δ

)
+ (1− νA,t)fI1,t = fI1,t.

3. limνA→1 νIf
I
1,t = 0: When νA = 1, agent A, which faces no constraint, consumes

all dividends so markets are complete. Therefore f1,t

∣∣∣
νA=1

= fA1,t so this boundary

condition must hold.

4. ∂fI1,t

∂νA

∣∣∣∣∣
νA=0

= 0: As νA → 0, indexers consume all dividends. However, they have a

worst investment opportunity set than active investors, so this can’t hold for more

than an instant. fI1,t is also bounded by 1/δ, which occurs when indexers consume

all dividends. Because fI1,t cannot grow outside the domain of νA = 0, the

Neumann condition must be a reflecting boundary condition where the derivate

is equal to 0. Therefore this boundary condition must be a reflecting boundary

condition.
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B.10 Matching moments

I now have expressions for both fAi,t and fIi,t. I have a closed form expression for fAi,t that

depends on exogenous parameters and state variables, which is easy to evaluate nu-

merically. For fIi,t, I have a PDE that can be approximated. However, the current form

of that solution depends on the endogenously determined σ because of the dependence

on σλ. I have that Si,t = DM,tfi,t, so:

dSi = DMdfi + fidDM + dfidDM ,

dSi
Si

= dfi
fi

+ dDM

DM

+ dfi
fi

dDM

DM

, (A.101)

where
dDM

DM

= µDdt+ σ′DdZ,

and σD = s1σD1 + s2σD2 + (1− s1− s2)σD3 . I know that fi,t is a function of exogenous

parameters and state processes s1, s2 and νA, therefore from Itô’s Lemma I get:

dfi =
[
µνA

∂fi
∂νA

+ µs1

∂fi
∂s1

+ µs2

∂fi
∂s2

+ 1
2

(
σ2
νA

∂2fi
∂ν2
A

+ σ2
s1

∂2fi
∂s2

1
+ σ2

s2

∂2fi
∂s2

2

+2σ′νAσs1

∂2fi
∂νA∂s1

+ 2σ′νAσs2

∂2fi
∂νA∂s2

+ 2σ′s1σs2

∂2fi
∂s1∂s2

)]
dt

+
[
σνA

∂fi
∂νA

+ σs1

∂fi
∂s1

+ σs2

∂fi
∂s2

]′
dZ. (A.102)

From the definition of stock return process, I also have that:

dSi
Si

=
[
µi −

Di

Si

]
dt+ σ′idZ, (A.103)
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where

µi = 1
fi

[
µνA

∂fi
∂νA

+ µs1

∂fi
∂s1

+ µs2

∂fi
∂s2

+ 1
2

(
σ2
νA

∂2fi
∂ν2
A

+ σ2
s1

∂2fi
∂s2

1
+ σ2

s2

∂2fi
∂s2

2

+2σ′νAσs1

∂2fi
∂νA∂s1

+ 2σ′νAσs2

∂2fi
∂νA∂s2

+ 2σ′s1σs2

∂2fi
∂s1∂s2

)

+
(
σνA

∂fi
∂νA

+ σs1

∂fi
∂s1

+ σs2

∂fi
∂s2

)′
σD

]
+ µD, (A.104)

σi = 1
fi

[
σνA

∂fi
∂νA

+ σs1

∂fi
∂s1

+ σs2

∂fi
∂s2

]
+ σD. (A.105)

Note that the expression I have for σλ from (A.44) is a function of both σ and the

equilibrium price ratio f1/f2, since ωI1 = 1 + f1/f2 and ωI2 = 1 + f2/f1. I first use

the definitions of σ and σλ to create perturbation expansions of these moments as a

function of f1, f2, f3 and their own expansions. Substituting these expansions in the

PDE (A.95), I create a perturbation expansion of the PDE, and then solve by equating

terms in the different powers of ε. The result is the closed-form approximation

fI1 = fA1 + 1
2 (s1 + s2) νAδ2 s1

(
2 (−1 + s1 + s2)

(
−s2 + 2

(
s2

1 + s1 (−1 + s2) + s2
2

))
+ (s1 + s2)

(
1 + 2s2

1 + 2 (−1 + s2) s2 + s1 (−3 + 2s2)
)
νA
)

(1− ρD)σ2
D +O(ε4).

(A.106)

As in the unconstrained economy, I find fI2 by symmetry and fA3 by fI3 = 1
δ
− fI1 − fI2 .

A drawback of the use of a perturbation expansion is that it is impossible to guarantee

that the boundary conditions will be satisfied. It is easy to see that in this case

(A.100) is not satisfied, which means that the approximation will not be valid in the

neighborhood of νA = 0. Since this region is not economically important for the current
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analysis,7 this does not pose a problem as long as the analysis focuses on values of νA

that are away from that boundary.

C Vector notation

This section introduces the two different vector bases I use in the proofs. While not

a necessary read, this section is a useful appendix for understanding the proofs. The

reason for using different bases is to simplify certain steps of the proof. Steps involv-

ing stock returns are easier to solve under the market basis. However, when solving

for equilibrium stock return dynamics, the dividend basis is more appropriate. The

dividend processes in (A.1) can be represented as a vector:

dDt

Dt

= µD1dt+ σD1′dZDt , (A.1)

where dDt

Dt
is a vector with dDi,t

Di,t
as the i-th element and dZDt is a vector with dZDi,t

as

the i-th element. Since the dZDi,t
can be correlated, we can represent the correlation

matrix of dZDt as

CDt =


1 ρD ρD

ρD 1 ρD

ρD ρD 1

 .

Stock returns in (A.4) can also be represented in vector notation:

dRt = µtdt+ σtdZt,

7νA = 0 corresponds to the case where the aggregate wealth is fully owned by the indexer, and

the remaining active investor still has to hold the share of the non-index stock. The realization of

such a scenario seems highly unlikely.
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where dRt, µt and dZt are vectors with dRi,t, µi,t and dZi,t as the i-th element and σt

is a diagonal matrix with σi,t as the i-th diagonal element. The dZt BM are correlated

with correlation matrix:

Ct =


1 ρt,12 ρt,13

ρt,12 1 ρt,23

ρt,13 ρt,23 1

 .

C.1 Rotation matrix

It is often easier to deal with independent Brownian motions (BM) than correlated

ones. It is possible to transform a multivariate BM to a vector of independent BM

using a rotation matrix. Under that transformation, drifts, variances and covariances

of Itô processes are invariant. Consider the three-dimensional multivariate BM Z =

[Z1 Z2 Z3]′ with correlation matrix:

C =


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 .

Using the Cholesky decomposition, we can construct a rotation matrix K to transform

Z into a three-dimensional vector of independent BM. From the Cholesky decomposi-

tion, we get the lower triangular matrix L such that LL′ = C. The matrix L is often

used to generate correlated BM from independent ones such that Z = LX. In this

case, I am interested in the inverse process: X = KZ where K = L−1.
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Applying the Cholesky decomposition to the matrix C,

K =
1 0 0

− ρ12√
1−ρ2

12

1√
1−ρ2

12
0

ρ13−ρ12ρ23√
(1−ρ2

12)(1−ρ2
12−ρ2

13+2ρ12ρ13ρ23−ρ2
23)

−ρ12ρ13+ρ23√
(1−ρ2

12)(1−ρ2
12−ρ2

13+2ρ12ρ13ρ23−ρ2
23)

1√
1+

ρ2
13−2ρ12ρ13ρ23+ρ2

23
−1+ρ2

12

 .
(A.2)

Changing the set of BMs using a rotation matrix is called a change of basis. Drift
terms, total variances and covariances between processes are invariant under a change
of basis. Note that if the initial BM are uncorrelated (correlation terms in C all equal
to 0), then the rotation matrices L and K collapse to the identity matrix.

C.2 Dividend basis

The BM driving the dividend processes described in (A.1) are correlated. Consider
LDt , the lower triangular matrix from the Cholesky decomposition of CDt , and it’s
inverse KDt . Then I can rewrite (A.1) as:

dDt

Dt

= µDdt+ σDdZDt

= µDdt+ σDLDZDt

= µDdt+ σDZDt ,

where σD = σDLD and ZDt = KDZDt . This transformation yields a new basis that I
call the dividend basis. The variance matrix under the dividend basis can be written
as:

σD =


1 0 0
ρD

√
1− ρ2

D 0
ρD

√
1−ρDρD√

1+ρD

√
3− 2ρD − 2

1+ρD

 . (A.3)

C.3 Market basis

Similarly, the BM driving the market return processes in (A.4) might be correlated as
they are determined endogenously. Consider Lt, the lower triangular matrix from the
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Cholesky decomposition of Ct, and it’s inverse Kt. Then I can write:

dRt = µtdt+ σtdZt

= µtdt+ σtLtdZt

= µtdt+ σtdZt,

where σt = σtLt and Zt = KtZt. This transformation yields a new basis that I call the
market basis. Under this basis,

σ =


σ1 0 0
ρ12σ2

√
1− ρ2

12σ2 0

ρ13σ3
−ρ12ρ13+ρ23√

1−ρ2
12

σ3

√
1 + ρ2

13−2ρ12ρ13ρ23+ρ2
23

−1+ρ2
12

σ3

 . (A.4)

Note that the return process can also be written under the dividend basis as:

dRt = µtdt+ σtdZDt ,

where σtdZDt = σtdZt = σtdZt. σt has the generic form:

σt =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (A.5)

However, this leaves 9 unknowns to solve for in σt (it is a 3 × 3 matrix), whereas the
known structure of σt leaves only 6 unknowns to solve for, namely σ1, σ2, σ3, ρ12, ρ13

and ρ23.
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D Figures and Tables

Figure A.1. Average Comovement of S&P 500 Stocks from 1957 to 2017
- Univariate Regressions
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This figure presents the average annual comovement βs of S&P 500 stocks from 1957
to 2017 estimated from the univariate regressions:

Rj,t = αSP500,j + βunivj,SP500,tRSP500,t + uSP500,j,t

Rj,t = αnonSP500,j + βunivj,nonSP500,tRnonSP500,t + unonSP500,j,t,

The sample includes stocks in the index on the last trading day of the year, using
returns from the following 12 months.
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Table A.1. Changes in Comovement on Lagged Changes in Passive
Ownership - Univariate Regressions

This table presents regression estimates of changes in average comovement for S&P 500
firms (∆βunivSP500,t and ∆βunivnonSP500,t) on lagged changes in passive ownership (∆PO) and
on ∆βunivt−1 , the lagged value of the dependent variable. The dependent variables are
the changes in average βunivs. Comovement βunivs are estimated from the regressions

Rj,t = αSP500,j + βunivj,SP500,tRSP500,t + uSP500,j,t Rj,t = αnonSP500,j + βunivj,nonSP500,tRnonSP500,t + unonSP500,j,t,

where RSP500,t is the value-weighted return of the S&P 500 stocks portfolio (excluding
stock j) and Rnon-SP500,t is the value-weighted return of the rest of the market. Comove-
ment βs are estimated based on index membership at the end of December, using daily
returns for the following 12 months. PO is total passive assets under management
divided by the total CRSP market capitalization and acts as a proxy for the relative
wealth of indexers. Newey-West standard errors based on three lags and standard er-
rors based on a moving block bootstrap with three lags are presented in parenthesis and
square brackets, respectively, and bootstrapped p-values in italics. The bootstrapped
distribution is based on 100,000 samples. The sample period is 1985 to 2017.

∆βSP500,t ∆βnonSP500,t
(1) (2) (3) (4) (5) (6)

Intercept 0.006 0.005 0.007 0.001 -0.014 0.002
(0.01) (0.01) (0.01) (0.03) (0.03) (0.03)

0.64 0.68 0.62 0.96 0.60 0.95
∆POt−1 -1.735 -1.671 -9.924 -9.872

(2.30) (2.79) (8.86) (8.61)
0.46 0.55 0.27 0.26

∆βt−1 -0.227 -0.225 0.053 0.047
(0.17) (0.16) (0.13) (0.10)

0.19 0.17 0.68 0.65
Adj. R2 -0.021 0.016 -0.007 0.026 -0.030 -0.005
N 32 32 32 32 32 32
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